

TIGES ET ACCESSOIRES DE COFFRAGE

Les barres de coffrage SAS 900 sont disponibles en diamètres nominaux 15/17, et 20/23.

Associées à toute une gamme d'écrous, de manchons, de plaques, d'ancrages, de cônes et d'autres accessoires, ces barres permettent de résoudre la plupart des problèmes de coffrage.

En diamètre 15 et 20mm, les barres 15FA et 20FA sont soudables, cintrables sur un galet de diamètre 4d, et possèdent une résilience supérieure à 27J à -20°C ce qui les rend conformes à la norme NF P 93-

Les barres sont disponibles en stock en finition brute jusqu'à une longueur de 6m, finition électrozingué sur commande. Elles peuvent être fournies sur demande en longueurs spéciales.

Tige SAS 900 FA

La tige SAS 900 FA est reconnaissable grâce à ces deux nervures longitudinales au milieu du filetage. Elle possède également un marquage "SAS900" sur un des deux méplats, tous les 60cm environ.

La tige SAS 900 FA est agréée selon l'agrément technique allemand Z-12.5-96. Sa résilience supérieure à 28J à -20°C la rend conforme à la norme NF P 93-350 de Juin 1995 sur les banches industrialisées pour ouvrage en béton. Des essais au CEBTP confirment les caractéristiques principales (rapport CEBTP N° BMA6-8-0088).

Enfin, les tiges SAS 900 FA sont fabriquées et contrôlées selon un plan d'Assurance Qualité conforme à la norme ISO 9001 : 2000.

La tige SAS 900 FA est cintrable à 180° sur un galet de diamètre égal à 4 fois le diamètre nominal de la tige. Toutefois, dans le cas d'une utilisation en ancrage noyé dans le béton, les règles du B.A.E.L. 91 recommandent d'utiliser un rayon de cintrage de 5.5 fois le diamètre de la tige, soit un galet de cintrage de diamètre égal à 10 fois le diamètre nominal de la tige.

Le pointage de la tige SAS 900 FA n'affecte pas ses caractéristiques mécaniques. Elle peut être soudée selon un mode opératoire à définir selon l'application

Avant toute utilisation, un contrôle visuel des tiges est nécessaire. Toute tige déformée, marquée ou présentant des piqûres de rouille doit être éliminée. Aucune réparation des tiges n'est possible. Ne pas redresser une tige déformée. Le transport et le stockage des tiges doit se faire à l'abri des chocs et des produits corrosifs.

Tige noir: brut Ø 15, 20 et 26

TIRANT RAPIDE 15/17 BRUT

Rei.	L (III)	ng/1	DOX
02TIRW15050A	0.50	0.72	1
02TIRW15075A	0.75	1.08	1
02TIRW15100A	1.00	1.44	1
02TIRW15120A	1.20	1.73	1
02TIRW15125A	1.25	1.8	1
02TIRW15150A	1.50	2.16	1
02TIRW15200A	2.00	2.88	1
02TIRW15250A	2.50	3.6	1
02TIRW15300A	3.00	4.32	1
02TIRW15350A	3.50	5.04	1
02TIRW15400A	4.00	5.76	1
02TIRW15450A	4.50	6.48	1
02TIRW15500A	5.00	7.2	1
02TIRW15550A	5.50	8.64	1
02TIRW15600A	6.00	8.64	1

TIRANT RAPIDE 20/23 BRUT

Ref :	L (m)	Kg/1	Box
02TIRW20100	1.00	2.56	1
02TIRW20120	1.20	4.1	1
02TIRW20130	1.30	3.26	1
02TIRW20150	1.50	3.84	1
02TIRW20200	2.00	5.12	1
02TIRW20300	3.00	7.68	1
02TIRW20600	6.00	15.36	1

TIRANT RAPIDE 26/30 BRU1

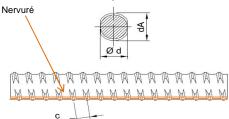
	TIRANT RAPIDE 26/30 BRUT			
Ref: L (m) Kg/1 Box				
	02TIRW26600	6.00	27	1

ACCESSBAT tel: 03.20.80.20.53 Fax: 03.200.206.36

Tige électrozinguée Ø 15, 20 et 26

TIRANT RAPIDE 26/30

Ref :	Caractéristiques	Kg/1	Box
02TIRW15600G	Ø 15/17; lg 6,00ml	8.64	1
02TIRW20600G	Ø 20/23; lg 6,00ml	15.06	1
02TIRW26600G	Ø 26/30; lg 6,00ml	26.88	1



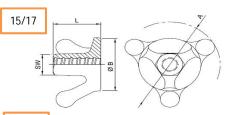
> Caractéristiques Techniques de la tige:

Ourable ristiques recrimiques de la tige.				
Diamètre nominal Ø d [mm]	15	20	26.5	
Diamètre exérieur Ø d _A [mm]	17	23	30	
Pas c [mm]	10	10	13	
Contrainte à la limite élastique	900 N	/mm² /	950 N/mm ² /	
/ à la rupture / Allongement	1100 N/mm² /		1050 N/mm² /	
fyk / ftk / Agt 1)	>3 %		> 5 %	
Limite élastique F _{p0,2k} [kN]	159	283	525	
Limite de rupture F _{tk} [kN]	195	345	580	
Section S [mm²]	177	314	551	
Résilience à -20°C Kv [J]	> 28 J	> 28 J	-	
Masse G [kg/m]	1.44	2.56	4.48	

¹⁾ Pourcentage d'allongement à la charge maximale

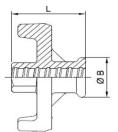
Ecrou forgé 3 ailettes

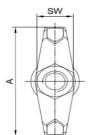
ECROU 3 OREILLES FORGÉ


Ref:	Caractéristiques	Kg/1
02ECR3OR17	3 oreilles Forgé 15/17 Base 65mm	0.2
02ECR3OR23B80	3 oreilles 20/23 Base 80mm	0.4


Caractéristiques Techniques:

Caracteristiques recliniques.			
Ø (mm)	15	20	
Ø B[mm]	65	80	
L [mm]	50	60	
A [mm]	110	110	
SW [mm]	27	36	
G [ka]	0.68	1.05	




Ecrou forgé 2 ailettes

ECROU PAPILLON 26/30 BASE 42MM

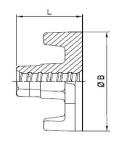
Ref :	Caractéristiques	Kg/1
02ECRPAP15B38	Ecrou Papillon 15/17 Base 38mm	0.42
02ECRPAP20B42	Ecrou Papillon 20/23 Base 42mm	0.41
02ECRPAP26B42	Ecrou Papillon 26/30 Base 42mm	0.89

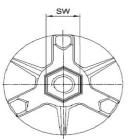
> Caractéristiques Techniques:

Ø (mm)	15	15	20
Ø B[mm]	40	60	62
L [mm]	50	50	67
A [mm]	90	110	118
SW [mm]	27	27	36
G [kg]	0.36	0.52	0.73

ECROU GÉANT 3 AILETTES

Ref :	Caractéristiques	Kg/1
02ECR3OR17MOULE	Ecrou 3 oreilles 15/17 Base 70mm	0.47
02ECRGEA15B130	Ecrou géant 3 ail. 15/17 Base 95mm	0.65
02ECRGEA15B1003	Ecrou géant 3 ail15/17 Base 110mm	0.82
02ECRGEA20B130	Ecrou géant 3 ail. 20/23 Base 130mm	1.3

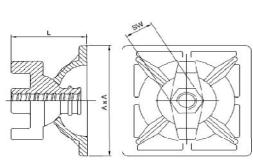



> Caractéristiques Techniques:

Ø (mm)	15	15	15
Ø B[mm]	70	95	110
L [mm]	55	55	55
SW [mm]	27	27	27
G [kg]	0.47	0.65	0.82

> Caractéristiques Techniques:

Ø (mm)	20
Ø B[mm]	130
L [mm]	65
SW [mm]	36
G [kg]	1.3



Ecrou moulé à 2 ailettes SPH

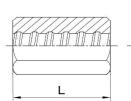
ECROU MOULE 2 AILETTES SPH

Ref:	Caractéristiques	Kg/1
02ECRPI15121210	Ecrou 2ail. 15/17 SPH120x120mm	1.3
02ECRPI20130	Ecrou 2ail. 20/23 SPH D130mm	1.3

> Caractéristiques Techniques:

Ø (mm)	15	20
L [mm]	65	85
AxA [mm]	120x120	Ø 130
SW [mm]	27	36
Angle [°]	10	10
G [kg]	1.08	1.52

Ecrou hexagonal


Zingué

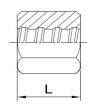
ECROU HEXAGONAL

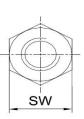
ECROO TIEXAGONAL		
Ref:	Caractéristiques	Kg/1
02ECRHES15L50	Ecrou hexagonal 15/17 L50mm	0.22
02ECRHES20L70	Ecrou hexagonal 20/23 L60mm	0.34
02ECRHEG15B50	Ecrou hexagonal 15/17 L50mm	0.21
02ECRHEG20B600	Ecrou hexagonal 20/23 L60mm	0.21

Angle maxi 10°

➤ Caractéristiques Techniques:

•	> ouracteristiques reciniques.			
	Ø (mm)	15	20	26.5
	SW [mm]	30	36	46
	L [mm]	50	60	60
	G [kg]	0.22	0.34	0.54


CONTRE-ECROU

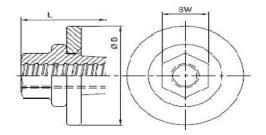

Ref :	Caractéristiques	Kg/1
02ECRHES15L25	Contre-Ecrou Soudable 15/17 L25mm	0.11
02ECRHES20L30	Contre-Ecrou Soudable 20/23 L30mm	0.18

> Caractéristiques Techniques:

Ø (mm)	15	20	26.5
SW [mm]	30	36	46
L [mm]	25	30	30
G [kg]	0.11	0.18	0.25

Ecrou à rondelle flottante pour banches OUTINORD

ECROU OUTINORD 20/23 BASE FLOTTANTE

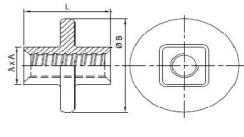

LONGO GOTINOND 20/23 BAGET LOTTANTE				
Ref :	Caractéristiques	Kg/1		
02ECRBASFLO9320	Ecrou OUTINORD 20/23 Base 95 L 69	1.07		

> Caractéristiques Techniques:

Caracteristiques reciniqu		
Ø (mm)	20	
Ø B[mm]	95	
L [mm]	69	
SW [mm]	38	
G [ka]	1.07	

Clé avec douille de 38 mm.

Ecrou carré pour banches OUTINORD


ECROU OUTINORD 20/23 B CARRÉ

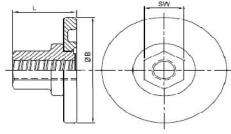
ECROU OUTINORD 20/23 B CARRE			
Ref:	Caractéristiques	Kg/1	
02ECRBASCAR3020	Ecrou OUTINORD 20/23 B Carré 36 B90	1	

> Caractéristique Technique:

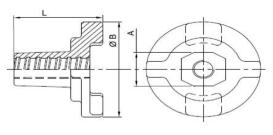
/ Ourable ist	que reornique
Ø (mm)	20
Ø B[mm]	90
L [mm]	72
AxA [mm]	36 x 36
G [ka]	1.00

Ecrou à rondelle flottante pour banches HUSSOR

ECROU HUSSOR 20/23 BASE FLOTTANTE


Ref :	Caractéristiques	Kg/1		
02ECRBASFLOHUSS	Ecrou HUSSOR 20/23 Base Flot 120	1.27		

> Caractéristiques Techniques:


Ø (mm)	20
Ø B[mm]	120
L [mm]	71
SW [mm]	36
G [kg]	1.27

Ecrou carré pour banches HUSSOR

ECROU HUSSOR 20/23 CARRÉ

LONGO MOGGON 20/23 CANNE		
Ref :	Caractéristiques	Kg/1
02ECRBASCARHUSS	Ecrou HUSSOR 20/23 Carré 32 D90	0.83

➤ Caractéristiques Techniques:

Ø (mm)	20
Ø B[mm]	90
L [mm]	70
A [mm]	32
G [kg]	0.83

Ecrou à rondelle flottante pour banches SATECO

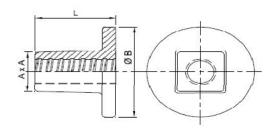
ECROU SATECO 20/23 BASE FLOTTANTE

Ref :	Caractéristiques	Kg/1
02ECRBASFLOSATE	Ecrou SATECO 20/23 Base Flot95 L61	1

> Caractéristiques Techniques:

/ Our dotter isti	ques reciniqu
Ø (mm)	20
Ø B[mm]	95
L [mm]	61
SW [mm]	36
G [kg]	1.0

Ecrou carré pour banches SATECO

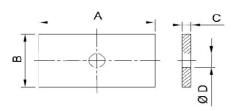

ECROU SATECO 20/23 CARRÉ

Ref :	Caractéristiques	Kg/1
02ECRBASCARSATE	Ecrou SATECO 20/23 Carré 35 D80 L60	0.71

➤ Caractéristiques Techniques:

/ Ourable istiques recining		
Ø (mm)	20	
Ø B[mm]	80	
L [mm]	60	
AxA [mm]	35 x 35	
G [kg]	0.71	

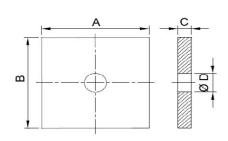
Plaque


PLAQUE D'APPUI 15/17 L130X70

Ref :	Caractéristiques	Kg/1
02PLAQ15130710	Plaque d'appui 15/17 L130x70-e10mm	0.7

> Caractéristiques Techniques:

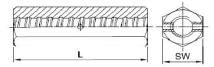
Caracteristiques recrimiques.			
Ø (mm)	15	15	
A x B[mm]	130 x 70	120 x 120	
C [mm]	10	12	
Ø D [mm]	18	18	
G [kg]	0.70	1.32	


PLAQUE D'APPUI L120X120MM

Ref :	Caractéristiques	Kg/1
02PLAQ20121212	Plaque d'appui 20/23 L120x120-e12mm	1.31
02PLAQ26121220	Plaque d'appui 26/30 120x120-e20mm	2.09

> Caractéristiques Techniques:

Caracteristiques recriniques:				
Ø (mm)	20	20	26.5	
A x B[mm]	120 x 120	120 x 120	120 x 120	
C [mm]	12	15	20	
Ø D [mm]	25	25	32	
G [kg]	1.31	1.60	2.09	



Manchon usiné

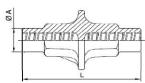
MANCHON USINÉ

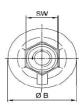
Ref :	Caractéristiques	Kg/1
02MANJON15L105	Manchon jonction 15/17 L105mm	0.46
02MANJON20L110	Manchon jonction 20/23 L125mm	0.69
02MANJON26L150	Manchon jonction 26/30 L150mm	1.37

> Caractéristiques Techniques:

,			
Ø (mm)	15	20	26.5
SW [mm]	30	36	46
L [mm]	105	125	150
G [kg]	0.46	0.69	1.37

Manchon moulé Waterstop


MANCHON MOULÉ


Ref :	Caractéristiques	Kg/1
02MANWAT15L110	Manchon Waterstop 15/17 L110mm	0.58
02MANWAT20L150	Manchon Waterstop 20/23 L150mm	1.37

Ø (mm)	15	20
L [mm]	110	150
ØA [mm]	26	32
ØB [mm]	65	90
SW [mm]	30	40
G [kg]	0.58	1.37

Ecrou soudé ovale

ECROU À SOUDER OVALE

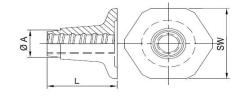
Ref:	Caractéristiques	Kg/1
02ECRASOUDER15	Ecrou à souder ovale 32x128mm	0.41

> Caractéristiques Techniques:

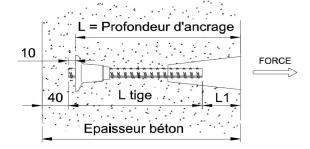
Ø (mm)	15
L [mm]	128
H [mm]	47
Ø [mm]	22
G [kg]	0.41

Pied d'ancrage

PIED D'ANCRAGE SOUDABLE


Ref:	Caractéristiques	Kg/1
02PIEDANCSOUD15	Pied d'ancrage Soudable 15/17 pour Tube 22/26	0.23
02PIEDANCSOUD20	Pied d'ancrage Soudable 20/23 pour Tube 32/36	0.51

Caracteristiques rechniques.								
Ø (mm)	15	20	26.5					
L [mm]	52	62	67					
ØA [mm]	22	32	40					
SW [mm]	60	78	115					
G [kg]	0.23	0.51	1.46					

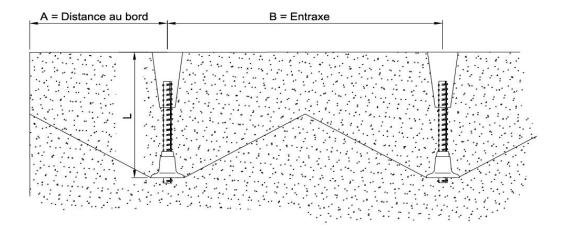


Fiche technique

➤ Calcul de la longueur de la tige:

Longueur Tige = Profondeur d'ancrage – L1 +10mm
Longueur Tige = Epaisseur béton – L1 – 40mm (pour un enrobage de 40mm).

L1 dépend du cône de pose utilisé.


Cône de pose	L1	Longueur Tige	Longueur Tige
15CO2855	58mm	Profondeur d'ancrage – 48mm	Epaisseur béton – 98mm
20CO3364	65mm	Profondeur d'ancrage – 55mm	Epaisseur béton – 105mm
20CO88M39	85mm	Profondeur d'ancrage – 75mm	Epaisseur béton – 125mm
26CO88M39	85mm	Profondeur d'ancrage – 75mm	Epaisseur béton – 125mm

> Vérification de la résistance de l'ancrage :

La valeur de charge en traction reprise par un pied d'ancrage dépend de la profondeur d'ancrage (L), de la résistance du béton, des distances aux bords béton (A) et des distances entre ancrages (B).

Les valeurs ci-dessous sont données à titre indicatif, avec un coefficient de sécurité de 2,5.

Attention, dans tous les cas la charge utile est limitée à la charge d'utilisation de la tige SAS900 correspondante, soit
- 97 kN pour la tige SAS 900 / 15 (= valeurs en blanc dans les tableaux ci-après)
- 172 kN pour la tige SAS 900 / 20 (= valeurs en orange clair dans les tableaux ci-après)

Charge utile (kN) en traction reprise par un pied d'ancrage, en fonction de la résistance béton, de la profondeur d'ancrage (L), des distances aux bords béton (A) et des distances entre ancrages (B).

→ Cas N°1: Avec A > L et B > 2 L

Profondeur L (mm)	Epaisseur béton (mm)	A (mm)	B (mm)	10 MPa	15 MPa	20 MPa	25 MPa	30 MPa	35 MPa	40 MPa
150	200	>150	>300	10	14	17	19	22	24	26
200	250	>200	>400	19	24	29	34	39	43	47
250	300	>250	>500	29	38	46	53	60	67	73
300	350	>300	>600	42	55	66	77	87	96	105
350	400	>350	>700	57	75	90	105	118	131	143
400	450	>400	>800	74	97	118	137	154	171	187
450	500	>450	>900	94	123	149	173	196	217	237
500	550	>500	>1000	116	152	184	214	241	267	290

→ Cas N°2 : Avec A > 1,5 L et B > 3 L

Profondeur L (mm)	Epaisseur béton (mm)	A (mm)	B (mm)	10 MPa	15 MPa	20 MPa	25 MPa	30 MPa	35 MPa	40 MPa
150	200	>225	>450	21	27	33	38	43	48	53
200	250	>300	>600	37	49	59	68	77	86	94
250	300	>375	>750	58	76	92	107	121	134	146
300	350	>450	>900	84	109	133	154	174	193	211
350	400	>525	>1050	114	149	181	209	237	262	287
400	450	>600	>1200	149	195	236	274	290	290	290
450	500	>675	>1350	188	246	290	290	290	290	290
500	550	>750	>1500	232	290	290	290	290	290	290

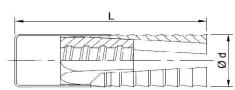
Note

Blanc < 97 kN : OK pour toutes les tiges					
Orange clair < 172 kN : Tiges 020 et 026,5 uniquement					
Orange foncé < 290 kN : Tige 026.5 uniquement					

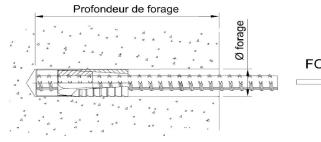
Dans tous les autres cas, veuillez nous contacter.

Cheville à expansion

ANCRAGE À BÉTON TIGE 20/23 L115 42-45


Ref :	Caractéristiques	Ø forage	Kg/1
02ANCBET15-3235	Ancrage à béton 15/17 L92 D32-35mm	32 à 35mm	0.22
02ANCBET15-3538	Ancrage à béton Tige 15/17 L106 D35-38mm	35 à 38mm	0.31
02ANCBET20	Ancrage à béton Tige 20/23 L115 D42-45	42 à 45mm	0.49

➤ Caractéristiques Techniques:


/ Our dotter isti	ques reciniqu	ico.	
Ø (mm)	15	15	20
Ød [mm]	32 - 35	35 - 38	42 - 45
L [mm]	92	106	115
G [kg]	0.22	0.31	0.49

Caractéristiques

Référence	Diamètre de forage (mini –	Charge maximale
Cheville	maxi) en mm	d'utilisation (kN)
02ANCBET15-3235	5	60
02ANCBET15-3538	35 - 38	60
02ANCBET20	42 - 45	94

FORCE

> Procédure d'installation : Réaliser le forage en respectant les diamètres mini et maxi. Souffler les forages avec de l'air comprimé afin d'expulser les particules.

Visser la tige sur la cheville à expansion en laissant dépasser la tige d'un ou deux filets (10 à 20mm).

Introduire la cheville jusqu'au fond du trou de forage. La bague plastique doit naturellement s'extraire lors de l'introduction dans le trou de forage. En aucun cas la bague plastique ne doit être introduite dans le trou de forage.

Visser la tige à fond jusqu'à ce que les parties latérales de la cheville soient plaquées contre le trou de forage.

Après mise en place de l'élément à fixer, il est recommandé d'appliquer une pré-charge égale à la charge à laquel doit

résister la cheville lors de son utilisation.

Les chevilles à expansion ne peuvent au aucun cas être utilisées pour du levage. Elles ne doivent servir qu'à de la fixation temporaire.

> Valeurs de charge :

La valeur de résistance de l'ancrage dépendant de nombreux paramètres (type et état du support, diamètre de forage, profondeur de forage, soin de la préparation,...), Il est donc toujours recommandé de réaliser des essais de traction dans les cas les plus défavorables avant démarrage des travaux.

Dans tous les cas, la charge d'utilisation est limitée à la charge maximale d'utilisation de la cheville correspondante (voir premier tableau).

Les tableaux ci-dessous sont donnés à titre indicatif, pour des ancrages dans un béton non fissuré.

Les distances entre ancrages doivent être supérieures à 3 fois la profondeur de forage et les distances aux bords

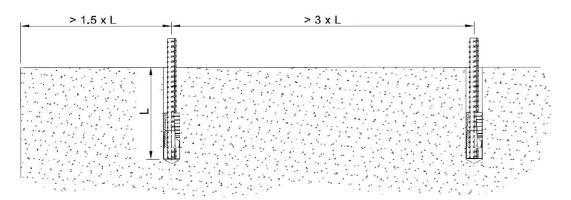


Tableau de charge (kN) - Chevilles 15CH3235 et 15CH3538

Profondeur	Distances	Distance	Résistance béton (f _{ck})					
de forage	aux bords	entre ancrages	15	20	25	30	35	40
(mm)	(mm)	(mm)	MPa	MPa	MPa	MPa	MPa	MPa
200	>300	>600	6	7	9	10	11	12
250	>375	>750	14	17	19	22	24	26
300	>450	>900	24	29	34	39	43	47
350	>525	>1050	38	46	53	60	60	60
400	>600	>1200	55	60	60	60	60	60
450	>675	>1350	60	60	60	60	60	60
500	>500	>1000	60	60	60	60	60	60

Note: La résistance des chevilles 15CH3235 et 15CH3538 est limitée à 60kN.

Tableau de charge (kN) - Chevilles 20CH4245

Profondeur	Distances	Distance		R	ésistance	béton (f _c	k)	
de forage	aux bords	entre ancrages	15	20	25	30	35	40
(mm)	(mm)	(mm)	MPa	MPa	MPa	MPa	MPa	MPa
200	>300	>600	6	7	9	10	11	12
250	>375	>750	14	17	19	22	24	26
300	>450	>900	24	29	34	39	43	47
350	>525	>1050	38	46	53	60	67	73
400	>600	>1200	55	66	77	87	94	94
450	>675	>1350	75	90	94	94	94	94
500	>500	>1000	94	94	94	94	94	94

Note: La résistance des chevilles 20CH4245 est limitée à 94kN.

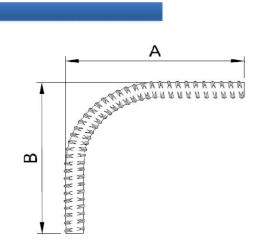
Dans tous les autres cas, veuillez nous contacter.

Tige coudée

La valeur de charge en traction reprise par une tige coudée dépend du diamètre de la tige, des dimensions A et B (en respectant bien le sens de pose) et de la résistance

Attention, dans tous les cas la charge utile est limitée à la charge d'utilisation de la tige SAS900 correspondante, soit:

- 97kN pour la tige SAS 900/ 15
- 172kN pour la tige SAS 900/ 20
- 290kN pour la tige SAS 900/ 26.5


- ➤ Mise en oeuvre:

 Bien respecter le sens A et B prévu. Lorsque A et B sont de
- longueurs différentes la charge utile diffère selon le sens de pose.
- La distance L entre la tige coudée et le nu extérieur béton doit être suffisante pour éviter tout éclatement du béton dûà la poussé au vide.

 - Les rayons de cintrage des tiges doivent être de R = 5.5 x D (avec

D diamètre de la tige), pour respecter les régles du B.A.E.L. 91, afin de respecter la condition de non écrasement du béton.

- Le montage dépend du cône de pose utilisé.

> Caractéristiques Techniques:

→ Charge utile (kN) repris en traction par une tige coudée vissée sur un cône, en fonction de la résistance béton.
Les valeurs ci-dessous sont calculées selon le B.A.E.L. 91, avec un coefficient partiel de sécurité de 1,5 par rapport au glissement de la tige dans le

Tiges coudées SAS900 Ø15

AxB	10	15	20	25	30	35	40
(mm)	Мра	Mpa	Mpa	Mpa	Mpa	Mpa	Mpa
150 x 150	15	19	23	27	31	35	39
200 x 200	23	28	34	40	45	51	57
250 x 250	30	38	45	53	60	68	75
150 x 300	30	37	45	52	59	67	74
300 x 150	23	29	35	40	46	52	58
150 x 400	39	49	59	69	79	88	97
400 x 150	28	35	42	49	56	63	70

Tiges coudées SAS900 Ø20

	AxB	10	15	20	25	30	35	40
	(mm)	Мра	Mpa	Mpa	Mpa	Mpa	Mpa	Mpa
	200 x 200	28	35	42	49	56	63	70
- 2	250 x 250	38	47	56	66	75	85	94
;	300 x 300	47	59	71	83	95	107	118

Tiges coudées SAS900 Ø26

11905 0044005 0710 700 220							
AxB	10	15	20	25	30	35	40
(mm)	Mpa						
250 x 500	97	121	145	170	194	218	242
500 x 350	85	107	128	149	170	192	213

Tige ondulé

> Caractéristiques Techniques:

Ø (mm)	15
L [mm]	550
G [kg]	0.79

Cônes d'ancrage

➤ Généralités:

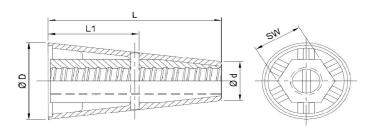
Le système de cône est conçu pour reprendre les efforts de cisaillement et les répartir dans le béton pour éviter sa fissuration.

Ce système est composé d'un cône de pose qui sert à créer la réservation au coulage du béton et d'un cône de reprise avec vis ou adaptateur à mettre en place en deuxième phase pour accrocher la console. Pour les plus gros cônes, il n'y a pas de cône de pose et le cône acier sert au coulage du béton et à la fixation ; il s'agit dans ce cas d'un cône de pose et de reprise.

Quand il existe, le cône de pose doit impérativement être utilisé pour créer l'empreinte dans le béton et les tiges doivent être vissées à fond jusqu'à la goupille centrale.

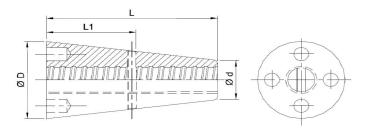
Tous les cônes sont démontables et réutilisables après contrôle visuel des pièces.

➤ <u>Gamme de cônes de pose et de reprise:</u>
Il existe une gamme de cônes de pose et de reprise adaptée aux différents diamètres de tiges et permettant de reprendre des efforts plus ou moins importants.



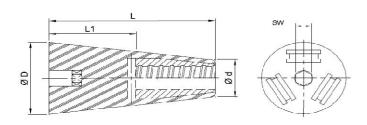
CÔNE DE POSE 20/23 L125MM 33.64

Ref :	Caractéristique	Kg/1
02CONPOSE20125	Cône de pose 20/23 L125mm	0.65


> Caractéristiques Techniques:

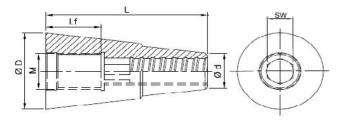
,						
Ø (mm)	15	20				
Ød (mm)	28	33				
ØD (mm)	55	64				
L1 [mm]	110	125				
L [mm]	58	65				
SW [mm]	30	36				
G [kg]	0.44	0.65				

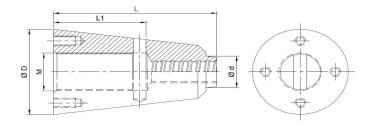
➤ Caractéristiques Techniques:


/ Odraoteristi	ques reciniqu	100.
Ø (mm)	15	20
Ød (mm)	28	33
ØD (mm)	55	64
L1 [mm]	110	125
L [mm]	58	65
G [ka]	0.9	1 43

Cône de pose Magnétique

Caractéristiques Techniques:


P Garacteristiques reciniques.							
Ø (mm)	15	20					
Ød (mm)	28	33					
ØD (mm)	55	64					
L1 [mm]	110	125					
L [mm]	58	65					
SW [mm]	12	12					
G [kg]	0.46	0.72					


> Caractéristiques Techniques:

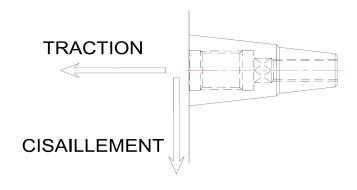
Ø (mm)	15	15	20
Ød (mm)	26	26	32
ØD (mm)	55	55	64
M (mm)	24	30	30
L [mm]	105	105	120
Lf [mm]	46	46	43
SW [mm]	17	19	19
G [kg]	0.88	0.8	1.31

> Caractéristiques Techniques:

Ø (mm)	20	26.5
Ød (mm)	32	40
ØD (mm)	88	88
M (mm)	39	39
L [mm]	150	155
L1 [mm]	85	85
G [kg]	3.5	3.45

> Techniques pour la mise en place des cônes de pose:

Cône	Banche métallique	Coffrage bois
15CO2855	Tige SAS900/15 traversant la banche	Tige SAS900/15 traversant le coffrage ou Positionneur de cône à clouer
15CO2855A	Tige SAS900/15 traversant la banche	Tige SAS900/15 traversant le coffrage ou Positionneur de cône à clouer
15CO2855M	Magnétisme	-
20CO3364	Tige SAS900/20 traversant la banche	Tige SAS900/20 traversant le coffrage ou Positionneur de cône à clouer
20CO3364A	Tige SAS900/20 traversant la banche	Tige SAS900/20 traversant le coffrage ou Positionneur de cône à clouer
20CO3364M	Magnétisme	-
20CO88M39	4 vis M10 ou 1 Vis M39	Positionneur de cône à clouer ou 4 vis M10 ou 1 Vis M39
26CO88M39	4 vis M10 ou 1 Vis M39	Positionneur de cône à clouer ou 4 vis M10 ou 1 Vis M39


> <u>Détermination des efforts appliqués sur le cône</u>:
Afin de dimensionner correctement le cône de reprise il faut tout d'abord calculer les efforts de **traction** et de **cisaillement** au droit du cône. Pour cela il faut tenir compte de l'ensemble des éléments de charge et en particulier :

Poids des éléments accrochés (passerelle, banche, personnel, matériel,...)

- Efforts dûs à la poussée du béton lors du coulage

- Autres efforts : vent, précontrainte de serrage de la vis ou adaptateur, ...

Un calcul classique de résistance des matériaux permet avec ces éléments de déterminer les efforts pondérés en traction et en cisaillement au droit du cône de reprise.

> Choix du cône à partir des efforts:

Après détermination des efforts de traction et de cisaillement, il est nécessaire de sélectionner le cône approprié par rapport aux charges maximales reprises par les cônes.

EN CISAILLEMENT, Charges maximales reprises par les cônes en fonction de la résistance béton

La résistance au cisaillement des cônes de reprise dépend de la résistance du béton. Le tableau ci-dessous indique les charges maximales reprises dans les cas de configurations optimales.

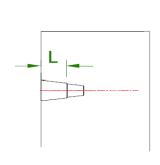
Résistance béton Fo			e béton Fck	
Cône	one 10 MPa		30 MPa	40 MPa
15CO55M24 15CO55M30	40 kN	55 kN	67 kN	78 kN
20CO64M30	58 kN	81 kN	100 kN	115 kN
20CO88M39 26CO88M39	113 kN	160 kN	200 kN	231 kN

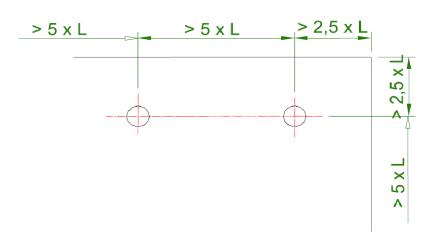
Les valeurs de charge du tableau de reprise sont valables sous réserve:

- du respect des dispositions constructives
- de l'utilisation d'un adaptateur ou d'une vis en classe 10.9

EN TRACTION, Charges maximales reprises par les cônes

L'effort maximal repris par un cône est la plus petite des 2 valeurs :

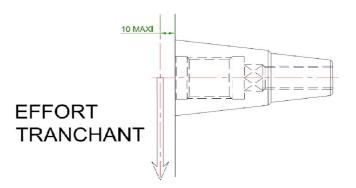

- Charge maximale de la tige (voir tableau ci-dessous)


Cône	Tige	Effort maxi de la tige
15CO55M24 15CO55M30	SAS 900 / 15	97 kN
20CO64M30	SAS 900 / 20	172 kN
20CO88M39 26CO88M39	SAS 900 / 26	290 kN

- Charge maximale de l'ancrage (fonction de l'ancrage choisi, de la résistance béton, de la profondeur d'ancrage, et généralement des distances entre ancrages et des distances aux bords béton). Pour le choix et le dimensionnement de l'ancrage, se référer aux fiches spécifiques sur les tiges coudées et sur les pieds d'ancrages.

➤ <u>Dispositions constructives</u> : Distances minimales entre cônes et distances minimales aux bords béton

Les distances entre cônes d'ancrage doivent être supérieures à 5 L.


Cône	L
15CO55M24	62 mm
15CO55M30	
20CO64M30	70 mm
20CO88M39	133 mm
26CO88M39	100 111111

Dans le cas où les distances minimales ne sont pas respectées, le bureau d'études devra dimensionner le frettage nécessaire pour éviter l'éclatement du béton, ou réduire l'effort admissible.

Déport maximale de l'effort tranchant:

L'effort tranchant admissible est basé sur un effort situé dans un plan parallèle distant au maximum de 10mm.

➤ <u>Précautions à prendre au montage des cônes, vis et adaptateurs</u>:

→ Cônes de pose :

- Quand il existe, le cône de pose doit impérativement être utilisé pour créer l'empreinte dans le béton.
- Nettoyer et graisser les cônes de pose avant chaque emploi afin d'assurer un démontage aisé. Le graissage des cônes de pose acier ou des cônes de pose et reprise acier est particulièrement nécessaire pour éviter tout problème au démontage.
- Vérifier que la tige de coffrage est vissée dans sa totalité dans le cône jusqu'à la goupille centrale.
 Pour l'utilisation de cônes de pose magnétiques, les tiges et ancrages doivent être ligaturés aux armatures de

l'ouvrage. Dans le cas contraire les vibrations, ou la chute du béton peuvent faire décoller les cônes de la banche.

- Démonter les cônes de pose juste après décoffrage du béton. Dans le cas de cônes de pose et reprise acier même si le cône est laissé en place pour servir à la reprise, il est nécessaire de le décoller du béton après décoffrage en le dévissant d'un quart de tour puis en revissant en place.

→ Cônes de reprise :

- Il est primordial de pouvoir visser ceux-ci sur la tige de coffrage jusqu'au contact de cette tige avec la butée (goupille). L'inobservation de cette règle risque de conduire, pendant le bétonnage, à un arrachement des filets du cône et à un risque d'accident. On devra s'assurer de cette possibilité de vissage « à fond » en contrôlant le dépassement de la tige de coffrage après démontage du cône de pose.
 - Vérifier la propreté du taraudage destiné à recevoir l'adaptateur ou la vis.
 - Après utilisation, nettoyer le cône et le stocker après l'avoir légèrement graissé.

- → Adaptateurs et vis :
 Il est indispensable de vérifier que celui-ci est bien adapté au sabot qu'il doit supporter.
 Vérifier que l'adaptateur est vissé dans sa totalité dans le cône.
- Vérifier la propreté du taraudage des adaptateurs afin de bien pouvoir visser la tige de coffrage extérieure.

Clé de banche

Clés utilisées pour le montage et l'ajustement des banches.

Fabrication Européenne CLÉ DE COFFRAGE ROCHER À JUPE

CEE DE COIT RAGE ROCHER À JUFE			
Ref:	Caractéristiques	Kg/u	Unité
4401 ED 4404/ 01000	O 00 1 - F70		

OLL DL OO! ! !	OLE DE CONTRACE ROOMER A CON E				
Ref:	Caractéristiques	Kg/u	Unité		
11CLEBANWJUP36			1		
11CLEBANWJUP38	Ø 38mm, Lg 570mm	4	1		

CLÉ DE COFFRAGE ROCHER À JUPE

Ref :	Caractéristiques	Kg/u	Unité
11CLEBANAJUP36	Ø 36mm, Lg 570mm	4	1
11CLEBANAJUP38	Ø 38mm, Lg 570mm	4	1

CLÉ DE COFFRAGE ROCHER TRAVERSANT

Ref :	Caractéristiques	Kg/u	Unité
	Ø 36mm, Lg 640mm		1
11CLEBANWTRA38	Ø 38mm, Lg 640mm	4	1

CLÉ DE COFFRAGE ROCHER TRAVERSANT

Ref:	Caractéristiques	Kg/u	Unité
11CLEBANATRA36	Ø 36mm, Lg 640mm	4	1
11CLEBANATRA38	Ø 38mm, Lg 640mm	4	1

CLÉ DE COFFRAGE À FRICTION

Ref :	Caractéristiques	Kg/u	Unité
11CLEBANWFRI36	Ø 36mm, Lg 590mm	2.5	1
11CLEBANWFRI38	Ø 38mm, Lg 590mm	2.5	1

CLÉ DE COFFRAGE À FRICTION

Ref:	Caractéristiques	Kg/u	Unité
11CLEBANAFRI36	Ø 36mm, Lg 590mm	2.5	1
11CLEBANAERI38	Ø 38mm. La 590mm	2.5	1

CLÉ DE COFFRAGE AVEC PIED DE BICHE

Ref :	Caractéristiques	Kg/u	Unité
	Ø 36mm, Lg 530mm		1
11CLEBANWBIC38	Ø 38mm, Lg 530mm	4	1

CLÉ À FRAPPER

Ref :	Caractéristiques	Kg/u	Unité
11CLEBANW36FRAP	Ø 36mm	4	1
11CLEBANW38FRAP	Ø 38mm	4	1

